Lịch sử Cân_bằng_hóa_học

Khái niệm cân bằng hóa học được phát triển sau khi Berthollet (1803) phát hiện ra rằng một số phản ứng hóa học có thể đảo ngược.[4] Đối với bất kỳ hỗn hợp phản ứng nào tồn tại ở trạng thái cân bằng, tốc độ của các phản ứng thuận và nghịch (ngược) là bằng nhau. Trong những điều sau đây phương trình hóa học với mũi tên chỉ cả hai cách để chỉ ra trạng thái cân bằng,[5] A và B là chất phản ứng, S và T là sản phẩm, và α, β, στ là hệ số cân bằng hóa học của các chất phản ứng tương ứng và các sản phẩm:

α   A + β   B ⇌   S + τ   T

Vị trí nồng độ cân bằng của một phản ứng được cho là nằm "ở bên phải" nếu, ở trạng thái cân bằng, gần như tất cả các chất phản ứng được dùng hết. Ngược lại, vị trí cân bằng được gọi là "ở bên trái" nếu hầu như không có sản phẩm nào được hình thành từ các chất phản ứng.

Guldberg và Waage (1865), dựa trên ý tưởng của Berthollet, đã đề xuất định luật phản ứng khối lượng

forward reaction rate = k + A α B β backward reaction rate = k − S σ T τ {\displaystyle {\begin{aligned}{\text{forward reaction rate}}&=k_{+}{\ce {A}}^{\alpha }{\ce {B}}^{\beta }\\{\text{backward reaction rate}}&=k_{-}{\ce {S}}^{\sigma }{\ce {T}}^{\tau }\end{aligned}}}

trong đó A, B, S và T là các khối lượng hoạt động và k + và k - là các hằng số tốc độ. Vì ở trạng thái cân bằng tốc độ thuận và nghịch đều bằng nhau:

k + { A } α { B } β = k − { S } σ { T } τ {\displaystyle k_{+}\left\{{\ce {A}}\right\}^{\alpha }\left\{{\ce {B}}\right\}^{\beta }=k_{-}\left\{{\ce {S}}\right\}^{\sigma }\left\{{\ce {T}}\right\}^{\tau }}

và tỷ lệ của hằng số tốc độ cũng là một hằng số, hiện được gọi là hằng số cân bằng.

K c = k + k − = { S } σ { T } τ { A } α { B } β {\displaystyle K_{c}={\frac {k_{+}}{k_{-}}}={\frac {\{{\ce {S}}\}^{\sigma }\{{\ce {T}}\}^{\tau }}{\{{\ce {A}}\}^{\alpha }\{{\ce {B}}\}^{\beta }}}}